Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(3-aminopyrazine-2-carboxylato- $\kappa^2 N^1$,O)diaquamanganese(II) monohydrate

Shan Gao^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 30 August 2010; accepted 1 September 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.047; wR factor = 0.165; data-to-parameter ratio = 13.4.

In the title compound, $[Mn(C_5H_4N_3O_2)_2(H_2O)_2]\cdot H_2O$, the Mn^{II} cation, located on a twofold rotation axis, is *N*,*O*-chelated by two 3-aminopyrazine-2-carboxylate anions and coordinated by two water molecules in a distorted octahedral geometry. The uncoordinated water molecules lies on a twofold rotation axis. Adjacent molecules are linked by O- $H\cdots O$ and $N-H\cdots O$ hydrogen bonds into a three-dimensional network motif.

Related literature

For the isostructural magnesium analog, see: Ptasiewicz-Bak & Leciejewicz (1997); Marsh (2004).

Experimental

Crystal data [Mn(C₅H₄N₃O₂)₂(H₂O)₂]·H₂O

 $M_r = 385.21$

metal-organic compounds

Orthorhombic, *Fdd2* a = 8.3107 (6) Å b = 29.5862 (17) Å c = 12.3791 (7) Å V = 3043.8 (3) Å³

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.875, \ T_{\max} = 0.930$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.165$ S = 1.141684 reflections 126 parameters 6 restraints Z = 8Mo K α radiation $\mu = 0.92 \text{ mm}^{-1}$ T = 293 K $0.15 \times 0.10 \times 0.08 \text{ mm}$

7239 measured reflections 1684 independent reflections 1086 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.056$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.50 \text{ e } \text{Å}^{-3}$ $\Delta \rho_{min} = -0.90 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 775 Friedel pairs Flack parameter: -0.02 (5)

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1w-H11···O2 ⁱ	0.84 (7)	1.89 (3)	2.704 (7)	162 (9)
$O1w-H12\cdots N2^{ii}$	0.84 (7)	2.02 (4)	2.792 (7)	152 (9)
$O2w-H2\cdots O1$	0.84(7)	2.10 (4)	2.902 (7)	159 (10)
N3-H31···O2	0.88(7)	2.17 (9)	2.690 (8)	118 (8)
$N3-H32\cdots O2w^{iii}$	0.88 (3)	2.15 (3)	3.001 (7)	161 (9)
Symmetry codes: (i) $-x$	$y_{1}, -y + \frac{1}{2}, z + \frac{1}{2}; ($	ii) $x - \frac{1}{4}, -y + \frac{3}{4}$	$z + \frac{1}{4};$ (iii) $-x - \frac{1}{4}$	$\frac{1}{4}, y + \frac{1}{4}, z - \frac{1}{4}$

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5022).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Marsh, R. E. (2004). Acta Cryst. B60, 252-253.
- Ptasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem. 71, 1350-1358.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, m1223 [doi:10.1107/S1600536810035233]

Bis(3-aminopyrazine-2-carboxylato- $\kappa^2 N^1$,O)diaquamanganese(II) monohydrate

S. Gao and S. W. Ng

Comment

The crystal structure of $Mg(H_2O)_2(C_5H_4N_3O_2)_2$ 'H₂O was described in the *Cc* space group (Ptasiewicz-Bak & Leciejewicz, 1997); the space group was revised to the *Fdd2* space group (Marsh, 2004). The manganese analog (Scheme I) is isostructural; The water-coordinated manganese atom is *N*,*O*-chelated by the carboxylate ion (Fig. 2) in an octahedral environment. The mononuclear and lattice water both lie on a twofold rotation axis. Adjacent molecules are linked by O–H…O and N–H…O hydrogen bonds into a three-dimensional network motif.

Experimental

Manganese acetate (1 mmol) and 2-aminopyrazine-3-carboxylic acid (2 mmol) and sodium hydroxide (2 mmol) were dissolved in a small volume of water to give a light yellow solution. Prismatic crystals separated from the solution after a few days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms and water H-atoms were located in a difference Fourier map, and were refined with a distance restraints of N-H 0.88 ± 0.01 and O-H 0.84 ± 0.01 Å; their temperature factors were tied to those of the parent atoms by a factor of 1.5 times.

The final difference Fourier map was featureless.

The second value in the WGHT is somewhat large. Using a smaller value led to a deeper hole in the final difference Fourier map and a larger *Goodness-of-fit*.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Mn(H_2O)_2(C_5H_4N_3O_2)_2H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The Mn and lattice water molecule lie on a twofold rotation axis. Symmetry-related atoms are not labeled.

$Bis (3-aminopyrazine-2-carboxylato-\kappa^2 N^1, O) diaquamanganese (II)\ monohydrate$

F(000) = 1576

 $\theta = 3.0 - 27.4^{\circ}$

 $\mu = 0.92 \text{ mm}^{-1}$

 $0.15 \times 0.10 \times 0.08 \text{ mm}$

T = 293 KPrism, yellow

 $D_{\rm x} = 1.681 {\rm Mg m}^{-3}$

Mo Ka radiation, $\lambda = 0.71073$ Å

Cell parameters from 4731 reflections

Crystal data

 $[Mn(C_{5}H_{4}N_{3}O_{2})_{2}(H_{2}O)_{2}] \cdot H_{2}O$ $M_{r} = 385.21$ Orthorhombic, *Fdd*2 Hall symbol: F 2 -2d a = 8.3107 (6) Å b = 29.5862 (17) Å c = 12.3791 (7) Å V = 3043.8 (3) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer	1684 independent reflections
Radiation source: fine-focus sealed tube	1086 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.056$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{max} = 27.4^\circ, \ \theta_{min} = 3.0^\circ$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -38 \rightarrow 38$
$T_{\min} = 0.875, T_{\max} = 0.930$	$l = -16 \rightarrow 15$
7239 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_0^2) + (0.0722P)^2 + 15.3101P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.165$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.14	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
1684 reflections	$\Delta \rho_{\rm min} = -0.90 \text{ e } \text{\AA}^{-3}$
126 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
6 restraints	Extinction coefficient: 0.0014 (3)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 775 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.02 (5)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.2500	0.2500	0.53687 (11)	0.0378 (4)
O1	0.0649 (6)	0.26569 (16)	0.4190 (4)	0.0457 (11)
O2	-0.0500 (7)	0.31796 (16)	0.3169 (4)	0.0606 (16)
O1W	0.0675 (8)	0.24512 (17)	0.6593 (4)	0.0561 (16)
H11	0.084 (11)	0.225 (2)	0.706 (5)	0.084*
H12	0.006 (9)	0.267 (2)	0.675 (8)	0.084*
O2W	-0.2500	0.2500	0.5133 (9)	0.069 (3)
H2	-0.164 (7)	0.248 (4)	0.478 (7)	0.104*
N1	0.2472 (6)	0.32757 (14)	0.5175 (4)	0.0348 (13)
N2	0.2176 (7)	0.41941 (18)	0.4774 (5)	0.0515 (16)
N3	0.0251 (9)	0.4054 (2)	0.3489 (6)	0.0634 (19)
H31	-0.048 (9)	0.391 (3)	0.311 (7)	0.095*
H32	0.035 (11)	0.4344 (8)	0.335 (8)	0.095*
C1	0.0468 (8)	0.30645 (19)	0.3886 (5)	0.0409 (14)
C2	0.1439 (7)	0.34192 (19)	0.4439 (5)	0.0349 (12)
C3	0.1271 (8)	0.3890 (2)	0.4229 (5)	0.0427 (14)
C4	0.3184 (10)	0.4035 (2)	0.5501 (7)	0.0587 (19)
H4	0.3808	0.4241	0.5886	0.070*
C5	0.3368 (9)	0.3572 (2)	0.5727 (6)	0.0503 (17)
Н5	0.4095	0.3474	0.6248	0.060*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0457 (7)	0.0301 (6)	0.0376 (7)	0.0012 (7)	0.000	0.000
01	0.051 (3)	0.035 (2)	0.051 (3)	-0.001 (2)	-0.009 (2)	0.000(2)
O2	0.076 (4)	0.050 (2)	0.055 (4)	0.010 (2)	-0.035 (3)	0.000(2)
O1W	0.070 (4)	0.048 (3)	0.050 (3)	0.010 (3)	0.019 (3)	0.008 (2)
O2W	0.044 (4)	0.055 (4)	0.109 (10)	-0.009 (4)	0.000	0.000
N1	0.041 (2)	0.030 (2)	0.033 (4)	-0.001 (2)	-0.009(3)	0.003 (2)
N2	0.056 (4)	0.039 (3)	0.059 (4)	-0.015 (3)	-0.008 (3)	0.004 (3)
N3	0.075 (5)	0.042 (3)	0.073 (5)	-0.001 (3)	-0.029 (4)	0.019 (3)
C1	0.050 (4)	0.033 (3)	0.040 (3)	0.001 (3)	-0.001 (3)	-0.003 (3)
C2	0.041 (3)	0.034 (3)	0.030 (3)	0.002 (2)	-0.008 (3)	-0.003 (2)
C3	0.046 (4)	0.037 (3)	0.044 (4)	-0.001 (3)	-0.001 (3)	0.006 (3)
C4	0.063 (4)	0.045 (4)	0.068 (5)	-0.019 (3)	-0.014 (4)	0.013 (4)
C5	0.055 (4)	0.043 (3)	0.053 (4)	-0.007(3)	-0.021(3)	0.006 (3)

Geometric parameters (Å, °)

Mn1—O1W ⁱ	2.149 (6)	N1—C5	1.338 (8)
Mn1—O1W	2.149 (6)	N2—C4	1.316 (10)
Mn1—O1	2.170 (5)	N2—C3	1.352 (8)
Mn1—O1 ⁱ	2.170 (5)	N3—C3	1.339 (8)

supplementary materials

Mn1—N1 ⁱ	2.308 (4)	N3—H31	0.88 (7)
Mn1—N1	2.308 (4)	N3—H32	0.88 (3)
O1—C1	1.273 (7)	C1—C2	1.490 (8)
O2—C1	1.245 (8)	C2—C3	1.424 (8)
O1W—H11	0.84 (7)	C4—C5	1.409 (9)
O1W—H12	0.84 (7)	C4—H4	0.9300
O2W—H2	0.84 (7)	С5—Н5	0.9300
N1—C2	1.322 (7)		
O1W ⁱ —Mn1—O1W	90.3 (4)	C5—N1—Mn1	126.3 (4)
O1W ⁱ —Mn1—O1	163.73 (16)	C4—N2—C3	117.2 (6)
O1W—Mn1—O1	89.33 (18)	C3—N3—H31	129 (7)
O1W ⁱ —Mn1—O1 ⁱ	89.33 (18)	C3—N3—H32	115 (6)
O1W—Mn1—O1 ⁱ	163.73 (16)	H31—N3—H32	115 (9)
O1—Mn1—O1 ⁱ	95.5 (3)	O2—C1—O1	123.1 (6)
O1W ⁱ —Mn1—N1 ⁱ	97.65 (18)	O2—C1—C2	119.0 (5)
O1W—Mn1—N1 ⁱ	90.79 (18)	O1—C1—C2	117.9 (6)
O1—Mn1—N1 ⁱ	98.61 (18)	N1—C2—C3	120.2 (5)
Ol ⁱ —Mn1—N1 ⁱ	73.16 (17)	N1—C2—C1	116.2 (5)
O1W ⁱ —Mn1—N1	90.79 (18)	C3—C2—C1	123.5 (5)
O1W—Mn1—N1	97.65 (18)	N3—C3—N2	116.9 (6)
O1—Mn1—N1	73.16 (17)	N3—C3—C2	122.7 (6)
Ol ⁱ —Mn1—N1	98.61 (18)	N2—C3—C2	120.3 (6)
N1 ⁱ —Mn1—N1	168.0 (3)	N2—C4—C5	123.5 (7)
C1—O1—Mn1	119.0 (4)	N2—C4—H4	118.2
Mn1—O1W—H11	115 (6)	С5—С4—Н4	118.2
Mn1—O1W—H12	122 (7)	N1—C5—C4	118.4 (6)
H11—O1W—H12	119 (10)	N1—C5—H5	120.8
C2—N1—C5	120.2 (5)	C4—C5—H5	120.8
C2—N1—Mn1	113.4 (4)		
O1W ⁱ —Mn1—O1—C1	14.2 (12)	Mn1—N1—C2—C3	179.6 (5)
O1W—Mn1—O1—C1	102.9 (5)	C5—N1—C2—C1	-178.6 (6)
O1 ⁱ —Mn1—O1—C1	-92.7 (5)	Mn1—N1—C2—C1	1.0 (7)
N1 ⁱ —Mn1—O1—C1	-166.4 (5)	O2—C1—C2—N1	-178.5 (6)
N1—Mn1—O1—C1	4.7 (5)	O1—C1—C2—N1	3.0 (9)
O1W ⁱ —Mn1—N1—C2	179.9 (4)	O2—C1—C2—C3	3.0 (9)
O1W—Mn1—N1—C2	-89.8 (4)	O1—C1—C2—C3	-175.5 (6)
O1—Mn1—N1—C2	-2.8 (4)	C4—N2—C3—N3	-179.9 (8)
O1 ⁱ —Mn1—N1—C2	90.4 (4)	C4—N2—C3—C2	-0.7 (10)
N1 ⁱ —Mn1—N1—C2	44.8 (4)	N1—C2—C3—N3	179.6 (7)
O1W ⁱ —Mn1—N1—C5	-0.6 (6)	C1—C2—C3—N3	-1.9 (10)
O1W—Mn1—N1—C5	89.8 (6)	N1—C2—C3—N2	0.5 (10)
O1—Mn1—N1—C5	176.8 (6)	C1—C2—C3—N2	178.9 (6)
Ol ⁱ —Mn1—N1—C5	-90.0 (6)	C3—N2—C4—C5	0.5 (13)
N1 ⁱ —Mn1—N1—C5	-135.6 (5)	C2—N1—C5—C4	-0.2 (10)

supplementary materials

Mn1—O1—C1—O2	175.7 (5)	Mn1—	-N1—C5—C4		-179.8 (5)
Mn1—O1—C1—C2	-5.8 (8)	N2—C	C4—C5—N1		0.0 (13)
C5—N1—C2—C3	0.0 (9)				
Symmetry codes: (i) – <i>x</i> +1/2, – <i>y</i> +1/2, <i>z</i> .					
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> –	-H	H···A	$D \cdots A$	D—H··· A
O1w—H11···O2 ⁱⁱ	0.84	4 (7)	1.89 (3)	2.704 (7)	162 (9)
O1w—H12···N2 ⁱⁱⁱ	0.84	4 (7)	2.02 (4)	2.792 (7)	152 (9)
O2w—H2···O1	0.84	4 (7)	2.10 (4)	2.902 (7)	159 (10)
N3—H31…O2	0.8	8 (7)	2.17 (9)	2.690 (8)	118 (8)
N3—H32···O2w ^{iv}	0.8	8 (3)	2.15 (3)	3.001 (7)	161 (9)
Symmetry codes: (ii) $-x$, $-y+1/2$, $z+1/2$;	(iii) <i>x</i> -1/4, - <i>y</i> +3/	/4, z+1/4; (iv) -x-	-1/4, $y+1/4$, $z-1/4$.		

